Synthesis of 9-[1-Benzyl-5-(alkylsulfonyl)-1H-2-imidazolyl]perhydro-1,8-acridinediones
 F. Hadizadeh ${ }^{1,2^{*}}$ and N . Mehri ${ }^{2}$

1,2Biotechnology and Pharmaceutical Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ${ }^{2}$ Pharmacy Faculty, Mashhad University of Medical Sciences, Mashhad, Iran Received May 19. 2005

Tricyclic dihydropyridines like ZM244085 are potential $\mathrm{K}_{\text {ATP }}$ channel openers. In this study 3-cyanophenyl ring of ZM244085 was replaced with imidazolyl ring. So, 9-[1-benzyl-5-(alkylsulfonyl)-1H-2-imidazolyl]perhydro-1,8-acridinediones (5d-f) were synthesized from 2-alkylsulfonyl-1-benzyl-5formylimidazole ($\mathbf{4 d} \mathbf{- f}$) and cyclohexane-1,3-dione according to classical Hantzch synthesis as potential potassium channel modulators.
J. Heterocyclic Chem., 43, 213 (2006).

The dihydropyridine system is usually associated with calcium L-channel blockade and activation. This class of compounds have been the subject of many structure-activity relationship (SAR) studies [1-5] and recent developments in the chemistry of DHPs has been reviewed [6]. The potassium channel in particular has several general features analogous to the calcium channel [5], it has been found that some tricyclic dihydropyridines (e.g. 1,8acridinedione) like ZM244085 or 9-(3- cyanophenyl)hexa-hydro-1,8-acridinedione serve as activators at the ATPsensitive K^{+}channel where glibenclamide and related agents serve as clinically useful antagonists [7]. $\mathrm{K}_{\text {ATP }}$ openers have been studied in clinical studies for overactive bladder, although it is expected that hypotensive effects may limit dosing [8]. The reported bladder selective actions of tricyclic dihydropyridine, ZM244085 make it an attractive lead from which to design novel $\mathrm{K}_{\text {ATP }}$ openers. A previous SAR study on ZM244085 has been focused on the modification of tricyclic dihyropyridine core structure [8].

In the present report we studied aromatic ring, 3cyanophenyl, substitution with imidazolyl heterocycle,

ZM244085
which can mimic 3-cyanophenyl as an electron deficient ring. The synthesis of desired compounds as possible effective activators at the ATP-sensitive K^{+}channel was accomplished according to Scheme 1.

Benzylamine hydrochloride (1) was stirred with 1,3dihydroxyacetone dimer and potassium thiocyanate to give 5-hydroxymethyl-2-mercapto-1-benzylmidazole (2).

Scheme 1

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{n}=0,2$

Subsequent alkylation of compound 2 with alkyl halides afforded 2-alkylthio-1-benzyl-5-hydroxymethylimidazole (3). Oxidation of $\mathbf{3}$ with manganese dioxide in chloroform gave 2-alkylthio-1-benzyl-5-formylimidazole (4) [9]. Compound 4 was reacted in the dark with 1,3-cyclohexanedione and ammonium hydroxide in methanol according to Hanzsch synthesis to give the title 9-[1-benzyl-5-(alkyl-sulfanyl)-1H-2-imidazolyl]perhydro-1,8-acridinediones (5a,b,c) [10]. 2-Alkylthio-1-benzyl-5-formylimidazole (4a,b,c) was also oxidized by hydrogen peroxide in acetic acid [11] to the corresponding 2-alkylsulfonyl-1-benzyl-5formylimidazole ($\mathbf{4 d , e , f}$) which was reacted with 1,3cyclohexandione in the same manner to give 9-[1-benzyl-5-(alkylsulfonyl)-1H-2-imidazolyl]perhydro-1,8-acridinediones (5d,e,f).

EXPERIMENTAL

Melting points were determined on an Electrothermal Capillary apparatus and are uncorrected. The ir spectra were obtained using a Perkin-Elmer Model 1000. ${ }^{1} \mathrm{H}$ nmr were obtained on Bruker Ac-80 NMR spectrometer and chemical shifts (δ) are in ppm relative to internal tetramethylsilane. Elemental analyses (C, H,N) were within $\pm 0.4 \%$ of theoretical values. Title compounds (5a-f) are sensitive to light; all chemical procedures involving these were shielded from light whatever present. Compounds 2, 3a-c, 4a-c were prepared as described previously [9].

2-Methylsulfonyl-1-benzyl-5-formylimidazole (4d).

To a stirring solution of $\mathbf{4 a}(0.6 \mathrm{~g}, 2.6$, mmoles $)$ in acetic acid (5 ml) was added 30% hydrogen peroxide (4 drops) at room temperature. Two additional portions of 30% hydrogen peroxide (4 drops) were added after 2 and 4 hours. The reaction was continued overnight, the mixture diluted with water (10 ml) and neutralized with 10% aqueous solution of sodium hydroxide. The resulting aqueous mixture was extracted with chloroform (3×30 ml). The organic layer was dried (sodium sulfate) and concentrated under vacuum to give $0.6 \mathrm{~g}(85 \%)$ of $\mathbf{4 d} \mathrm{mp} 200^{\circ} \mathrm{C}$; ir: $1661 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriomethanol): $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHO}), 7.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$ imidazole), $7.63-7.13(\mathrm{~m}, 5 \mathrm{H}$, arom), $5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.19 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{H}, 4.58$; C, 54.53 ; N, 10.60; O, 18.16; S, 12.13. Found: H, 4.57; C, 54.33; N, 10.57; O, 18.20; S, 12.11.

2-Ethylsulfonyl-1-benzyl-5-formylimidazole (4e).

This compound was prepared from $\mathbf{4 b}$ similar to $\mathbf{4 d}$ as a brown oil (81%); ir: $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 9.63 (s, 1H, CHO), 7.85 (s, 1H, H4.imidazole), 7.63-7.13 (m, 5 H , arom), $5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.88\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.37\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: H, 5.07; C, 56.10; $\mathrm{N}, 10.06$; O, 17.25; S, 11.52. Found: H, 5.05; C, 55.87; N,10.10; O, 17.31; S, 11.46.

2-Benzylsulfonyl-1-benzyl-5-formylimidazole (4f).

This compound was prepared from $\mathbf{4 c}$ similar to $\mathbf{4 d}$ as a brown oil (70\%); ir: $1661 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ
9.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 7.85 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{4}$ imidazole), 7.63-7.13 (m, 10 H , arom), 5.25 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 4.96 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$).
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: $\mathrm{H}, 4.74 ; \mathrm{C}, 63.51$; N, 8.23; O, 14.10; S, 9.42. Found: H, 4.75; C, 63.25; N, 8.26; O, 14.04; S, 9.38 .

9-[1-Benzyl-5-(methylsulfanyl)-1 H -2-imidazolyl]perhydro-1,8acridinedione (5a).

A solution of ammonium hydroxide ($25 \%, 0.4 \mathrm{ml}$) was added to a stirring solution of $\mathbf{4 a}$ ($0.3 \mathrm{~g}, 1.2$ mmoles) and 1,3 -cyclohexanedione ($0.3 \mathrm{~g}, 2.5$ mmoles) in methanol (5 ml). The mixture was protected from light and refluxed overnight. The methanol was evaporated at reduced pressure to give 0.4 g of $\mathbf{5 a}$ as a brown oil (78\%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuterichloroform): $\delta 7.83-6.60(\mathrm{~m}, 6 \mathrm{H}$, arom, $\mathrm{NH}, \mathrm{H}_{4}$-imidazole), $5.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}-\right.$ DHP), 2.6-1.5 (m, 15H, $\left.\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{~S}\right)$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{H}, 6.01 ; \mathrm{C}, 68.71 ; \mathrm{N}, 10.02 ; \mathrm{O}$, 7.63; S, 7.64. Found: H, 6.03; C, 68.47; N, 9.98; O, 7.60; S, 7.61.

9-[1-Benzyl-5-(ethylsulfanyl)-1 H -2-imidazolyl]perhydro-1,8acridinedione (5b).

This compound was prepared from $\mathbf{4 b}$ similar to $\mathbf{5 a}$ as a brown oil (83\%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.8-6.6(\mathrm{~m}, 7 \mathrm{H}$, arom, $\mathrm{NH}, \mathrm{H}_{4}$-imidazole), 5.62 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 5.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{4}$-DHP), 2.7-1.5 ($\mathrm{m}, 14 \mathrm{H}, \mathrm{CH}_{2}$), $1.1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{H}, 6.28 ; \mathrm{C}, 69.26 ; \mathrm{N}, 9.69 ; \mathrm{O}$, 7.38; S, 7.39. Found: H, 6.28; C, 69.20; N, 9.66; O, 7.41; S, 7.42.

9-[1-Benzyl-5-(benzylsulfanyl)-1 H -2-imidazolyl]perhydro-1,8acridinedione (5c).

This compound was prepared from $\mathbf{4 c}$ similar to $\mathbf{5 a}$ as a brown oil (77\%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.2-6.7$ (m, 12H, arom, $\mathrm{NH}, \mathrm{H}_{4}$-imidazole), 5.6 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 5.34 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{4}-$ DHP), 3.92 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$), 2.7-1.5 (m, $12 \mathrm{H}, \mathrm{CH}_{2}$).

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: H, 5.90; C, 72.70; N, 8.48; O, 6.46; S, 6.47. Found: H, 5.89; C, 72.45; N, 8.44; O, 6.43; S, 6.45.

9-[1-Benzyl-5-(methylsulfonyl)-1 H -2-imidazolyl]perhydro-1,8acridinedione (5d).

This compound was prepared from $\mathbf{4 d}$ similar to $\mathbf{5 a}$ as a brown oil (85%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuterichloroform): $\delta 7.83-6.60(\mathrm{~m}, 7 \mathrm{H}$, arom, $\mathrm{NH}, \mathrm{H}_{4}$-imidazole), 5.6 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $5.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}{ }^{-}\right.$ DHP), 3.3 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.6-1.5 ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}$).

Anal. Calcd. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \quad \mathrm{H}, 5.58 ; \mathrm{C}, 63.84 ; \mathrm{N}, 9.31 ; \mathrm{O}$, 14.17; S, 7.10. Found: H, 5.55; C, 64.09; N, 9.34; O, 14.11; S, 7.12.

9-[1-Benzyl-5-(ethylsulfonyl)-1 H -2-imidazolyl]perhydro-1,8acridinedione (5e).

This compound was prepared from $\mathbf{4 e}$ similar to $\mathbf{5 a}$ as a brown oil (78%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.8-6.6(\mathrm{~m}, 7 \mathrm{H}$, arom, $\mathrm{NH}, \mathrm{H}_{4}$-imidazole), 5.62 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 5.18 (s, $1 \mathrm{H}, \mathrm{H}_{4}$-DHP), $3.88\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.7-1.5\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{H}, 5.85 ; \mathrm{C}, 64.50 ; \mathrm{N}, 9.03$; O, 13.75; S, 6.89. Found: H, 5.85; C, 64.50; N, 9.03; O, 13.75; S, 6.89.

9-[1-Benzyl-5-(benzylsulfonyl)-1 H -2-imidazolyl]perhydro-1,8acridinedione (5f).

This compound was prepared from $\mathbf{4 f}$ similar to $\mathbf{5 a}$ as a brown oil (77\%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.83-6.60$ (m, 12H,
arom, $\mathrm{NH}, \mathrm{H}_{4}$-imidazole), $5.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}-\right.$ DHP), $4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.6-1.5\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$.

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: H, 5.90; C, 72.70; N, 8.48; O, 6.46; S, 6.47. Found: H, 5.89; C, 72.45; N, 8.44; O, 6.43; S, 6.45.

Acknowledgement.
This work was supported by grants from the research of the Mashhad University of Medical Sciences.

REFERENCES AND NOTES

*Corresponding Author: fhadizadeh@yahoo.com
[1] S. Goldmann, J. Stoltefuss, Angew. Chem. Int. Ed. Eng., 30, 1559 (1991).
[2] D. A. Langs, P. D. Strong, D. J. Triggle, J. Comput. Aided Mol. Des., 4, 215 (1990).
[3] P. P. Mager, R. A. Coburn, A. J. Solo, D. J. Triggle, H. Rothe, Drug Des. Discov., 8, 273 (1992).
[4] G. C. Rovnyak, S. D. Kimbal, B. Beyer, G. Cucinotta, J. D. DiMarco, J. Gougoutas, A. Hedberg, M. McCarthy, R. Zhang, S. Morelande, J. Med. Chem., 38, 119 (1995).
[5] G. W. Zamponi, S. C. Stotz, R. J. Staples, T. M. Andro, J. K. Nelson, V. Hulubei, A. Blumenfeld, N. R. Natale, J. Med. Chem., 46, 87 (2003).
[6] R. Lavilla, J. Chem. Perkin. Trans. 1, 9, 1141 (2002).
[7] D. J. Triggle, Mini Rev. Med. Chem., 3, 215, (2003).
[8] W. A. Carroll, K. A. Agrios, R. J. Altenbach, S. A. Buckner, Y. Chen, M. J.

Coghlan, A. V. Daza, I. Drizin, M. Gopalakrishnan, R. F. Henry, M. E. Kort, P. R. Kym, I. Milicic, J. C. Smith, R. Tang, S. C. Turner, K. L. Whiteaker, H. Zhang, J. P. Sullivan, J. Med. Chem., 47, 3180 (2004).
[9] F. Hadizadeh, F. I. Tafti, J. Heterocyclic Chem., 39, 841 (2002).
[10] A. Shafiee, F. Hadizadeh, A. Foroumadi, Ind. J. Chem., 36B, 813 (1997).
[11] A. Shafiee, T. Akbarzadeh, A. Foroumadi, F. Hadizadeh, J. Heterocyclic Chem., 35, 141 (1998).

